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Abstract

We outline methodologies for computation of the spatial dis-
tributions of energy-optimal linear initial and boundary distur-
bances to incompressible flows. The theory presented here is
based in techniques developed for constrained optimisation, but
we show that there are equivalent eigenvalue interpretations. As
a result the computations may be carried out either by optimi-
sation or eigensystem methods, leading to the same outcomes
though typically the eigensystem approaches converge more
rapidly for optimal initial condition calculations. We show how
the methods have been applied to example open flows.

Introduction

Methods for computing linear large-time stability and optimal
initial condition disturbances for transient growth in general in-
compressible flows are now well established (see e.g. [1, 15]).
For open flows (ones with an inflow and an outflow) one may
well be more interested in finding an inflow disturbance which
can lead to energetic disturbances further downstream than in
optimal initial disturbances: it is rather difficult to conceive how
an initial disturbance could actually be created within an open
flow.

We here discuss how to compute optimal inflow boundary con-
dition perturbations, those that produce an optimal gain, i.e. ki-
netic energy in the domain at a given time horizon normalised
by a measure of time-integrated energy on the inflow boundary
segment. The conceptual setting for these discussions lies in the
arena of optimal flow control, as described e.g. in [8, 13]. From
consideration of suitable constrained optimisation problems, we
show that one can compute either optimal initial or boundary
condition perturbations to prescribed base flows (UUU ,P) using it-
erative gradient-based methods. However, further consideration
also shows that in each case there is an equivalent eigenvalue
problem which delivers the same perturbation. We examine the
relative computational efficiencies of these two alternative ap-
proaches.

We demonstrate that, similarly to the optimal initial condition
problem, the gain can be interpreted as the leading singular
value of the forward linearized operator that evolves the bound-
ary conditions to the final state at a fixed time. In this investi-
gation we restrict our attention to problems where the temporal
profile of the perturbations examined is a product of a Gaus-
sian bell and a sinusoid, whose frequency is selected to excite
axial wavelengths similar to those of the optimal initial pertur-
bations in the same geometry. Comparison of the final state in-
duced by the optimal boundary perturbation with that induced
by the optimal initial condition demonstrates a close agreement
for the selected problem. Previous works dealing with optimal
boundary perturbation, e.g. [7] considered a prescribed spatial
structure and computed an optimal temporal variation of a wall-
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Figure 1: Schematic representation of a spatial flow domain Ω,
boundary ∂Ω and unit outward normal vector nnn.

normal velocity component, whereas here we consider pertur-
bations with a prescribed temporal structure and compute the
optimal spatial variation of velocity boundary conditions over
a one-dimensional inflow boundary segment. The methodol-
ogy is capable of finding optimal boundary condition perturba-
tions in general non-parallel two- and three-dimensional flows.
The gradient-based optimisation approach to these problems
has been described in an earlier paper [11], but here more con-
sideration is given to comparing optimisation and eigensystem
methodologies.

The optimal boundary perturbation problem is, in the flows ex-
amined to date at least, closely linked to the optimal initial con-
dition problem in that ultimately the same physics are excited
and the wave-packet nature of the optimal inflow perturbation
is closely linked to that for the optimal initial disturbance and
outcome.

Problem definition

Working from the incompressible Navier–Stokes equations

∂tuuu =−uuu ···∇∇∇uuu−∇∇∇p+Re−1
∇

2uuu, with ∇∇∇ ···uuu = 0,

where p is the modified or kinematic pressure, uuu is the veloc-
ity vector, while the Reynolds number Re = UD/ν where U
and D are convenient velocity and length scales and ν is kine-
matic viscosity. Decomposing the flow field as the sum of a base
flow and a perturbation i.e. (uuu, p) = (UUU ,P)+ (uuu′, p′) and omit-
ting the interaction of perturbations, we obtain the linearized
Navier–Stokes (LNS) equations, which govern the evolution of
infinitesimal perturbations, as

∂tuuu′=−UUU ···∇∇∇uuu′−(∇∇∇UUU)T ···uuu′−∇∇∇p′+Re−1
∇

2uuu′, with ∇∇∇···uuu′= 0,

or more compactly, considering that pressure is a dependent
variable in an incompressible flow,

∂tuuu′−L(uuu′) = 0. (1)



Flow is considered within a spatial domain Ω which has a
boundary surface ∂Ω and unit outward normal nnn, as indicated
in figure 1. Flow is taken to evolve over the time interval [0,τ],
so the space-time domain considered is Ω× [0,τ].

We introduce scalar products defined on spatial domain Ω and
its boundary ∂Ω

(aaa,bbb) =
∫

Ω

aaa ·bbb dV, 〈aaa,bbb〉=
∫

τ

0

∫
Ω

aaa ·bbb dV dt,

[ccc,ddd] = D
∫

∂Ω

ccc ·ddd dS, {ccc,ddd}= D
∫

τ

0

∫
∂Ω

ccc ·ddd dSdt,

where aaa,bbb ∈ Ω× [0,τ] and ccc,ddd ∈ ∂Ω× [0,τ]. Ω is the spatial
domain and ∂Ω is the spatial boundary. Length scale D is in-
troduced into these definitions in order to maintain dimensional
homogeneity.

By considering the space-time inner product of the linearized
Navier–Stokes equations with adjoint velocity and pressure
fields (uuu∗, p∗) and using integration by parts (but in conditions
where the perturbation and adjoint variables have compact sup-
port in both space and time, see [1]) we obtain the adjoint
Navier–Stokes equations (ANS) as

−∂tuuu∗ =−UUU ···∇∇∇uuu∗+∇∇∇UUU ···uuu∗−∇∇∇p∗+Re−1
∇

2uuu∗, ∇∇∇ ···uuu∗ = 0,

which are required to be integrated backwards in time owing to
the change in sign on the temporal derivative; a forwards inte-
gration would conversely imply negative diffusion. Again, for
convenience, we introduce a compact form for these equations:

∂tuuu∗+L∗(uuu∗) = 0. (2)

The optimal initial condition problem can be expressed as seek-
ing an initial perturbation to maximise the energy growth over
time interval τ, defined as the ratio of final energy at time τ

and the initial energy at time 0 and denoted as G; the optimal
boundary condition problem can be expressed as seeking the
boundary perturbations to maximise the gain, defined as the ra-
tio of final energy at time τ and a measurement of the boundary
perturbation, denoted as K. Hence

G = max
uuu0

(uuu′τ,uuu′τ)
(uuu′0,uuu′0)

and K = max
uuuc

(uuu′τ,uuu′τ)
{uuu′c,uuu′c}

, (3)

where uuu′0 ∈ Ω denotes the initial perturbation velocity vector,
uuu′c ∈ ∂Ω represents the (controlled sector) boundary velocity
vector and uuu′τ ∈ Ω is the response velocity vector at time τ.
In the initial value problem we set the boundary perturbation to
zero, while in the boundary value problem we set the initial per-
turbation to zero in order to isolate the developments of initial
and boundary perturbations and make the ratios G and K inde-
pendent of the magnitude of initial or boundary perturbations.

To reduce the dimension of uuu′c, we separate the spatial and tem-
poral dependencies and specify the temporal dependency ex-
plicitly, such that e.g.

uuu′c(xxx, t) = ûuuc(xxx) f (t,ω). (4)

The function f (t,ω) contains terms to eliminate temporal and
spatial discontinuity when integrating the governing equations,
as shown for example in figure 2. When the final time τ is large
enough, this decomposition tends to the Fourier decomposition
with ω acting as the frequency. Therefore in the optimal bound-
ary problem, we only optimise the spatial dependency function
ûuuc(xxx). Correspondingly the object to maximise becomes

K = max
ûuuc

(uuu′τ,uuu′τ)
[ûuuc, ûuuc]
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Figure 2: Example time-dependency of a controlled velocity
boundary condition, see (4).

where we observe that f (t,ω) is spatially constant and has the
effect of uniformly scaling uuu′τ and so is not included. Note that
K is dimensionless regardless of the system of spatial measure-
ment adopted, but is now particular to the choice of f (t,ω).

If the base flow is homogeneous in (say) the azimuthal direc-
tion θ for cylindrical coordinates (z,r,θ), we can further decom-
pose the perturbation field into azimuthal Fourier modes, each
of which will evolve independently under the assumption of lin-
earity, such that:

(uuu′, p′) = (u′,v′,w′, p′) =

[u′m(r,z),v
′
m(r,z),w

′
m(r,z), p′m(r,z)]exp(imθ),

where m denotes an integer azimuthal wavenumber. If the base
flow is homogeneous in the spanwise direction in a Cartesian
coordinate, a similar spanwise Fourier mode can be defined at a
real spanwise wavenumber. We note that provided the Fourier
mode index m > 0, the controlled boundary has zero net mass
flux at all times. To keep notation reasonably compact in what
follows we implicitly adopt Fourier decomposition for the per-
turbation field, only introduce its azimuthal/spanwise Fourier
mode index m when required, and suppress representation of
θ-dependence.

Overview of optimisation methodology

The ratios G or K in (3) are, in the language of optimisation, cost
or objective functionals which we can generalise as J (uuu′opt)
where uuu′opt represents either an optimal initial or boundary ve-
locity perturbation. We seek to maximize the ratios J (uuu′opt)
through suitable choices of uuu′opt. These functionals are to be
optimised subject to the constraint that the perturbation veloc-
ity evolves in a way that satisfies its state equation, i.e. (1). The
mechanism of Lagrange multipliers is invoked in order to con-
vert the constrained optimisation problems into unconstrained
optimisation problems [8, 13], in which the adjoint variables
(uuu∗, p∗) take the roles of Lagrange multipliers with respect to
the linearized Navier–Stokes equations:

L = J (uuu′opt)−〈uuu∗,∂tuuu′−L(uuu′)〉. (5)

The constrained optimisation task is then to seek stationary
points of the Lagrangian functional L with respect to arbitrary
variations in the control variable, δuuu′opt, as well as of the state
variable, δuuu′, adjoint variable, δuuu∗, and of the variable in the nu-
merator of the objective functional, the terminal velocity field at
time horizon τ, i.e. δuuu′τ. The standard methodology here is to



employ the Gâteaux differential ([7, 8, 13])

δL
δqqq

= lim
ε→0

L(qqq+ εδqqq)−L(qqq)
ε

≡ 〈∇qqqL ,δqqq〉, (6)

where qqq is any of the optimisation variables and δ represents an
arbitrary variation. The final inner product is taken as appropri-
ate to the variable whose variation is under consideration and
is used as a definition in order to obtain a gradient of L with
respect to the optimisation target variable (i.e. here either uuu′0 or
ûuuc) for gradient-based optimisation.

In order to be able to take arbitrary variations with respect to
the state variable uuu′ we will need to remove spatio-temporal
derivatives on that variable which are seen in (5). In this case
we need to more fully consider the role of initial and boundary
conditions. If we use integration by parts on the last term in (5)
we obtain (see [1])

−〈uuu∗,∂tuuu′−L(uuu′)〉= 〈uuu′,∂tuuu∗+L∗(uuu∗)〉

+
∫

τ

0

∫
Ω

−∂t(uuu′ ···uuu∗)dV dt

+
∫

τ

0

∫
Ω

∇∇∇ ··· [−UUU(uuu′ ···uuu∗)+uuu′p∗−uuu∗p′

+Re−1(∇∇∇uuu′ ···uuu∗−∇∇∇uuu∗ ···uuu′)]dV dt, (7)

which can be restated using only space-time boundary terms via
an exchange of the order of integrations in one integral and the
divergence theorem in another as

−〈uuu∗,∂tuuu′−L(uuu′)〉= 〈uuu′,∂tuuu∗+L∗(uuu∗)〉
−
(
uuu∗τ ,uuu

′
τ

)
+
(
uuu∗0,uuu

′
0
)

+
∫

τ

0

∫
∂Ω

nnn ··· [−UUU(uuu ···uuu∗)+uuu′p∗−uuu∗p′

+Re−1(∇∇∇uuu∗ ···uuu′−∇∇∇uuu∗ ···uuu′)]dSdt, (8)

where nnn is a unit outward normal vector on the boundary of the
domain, ∂Ω, see figure 1.

The particulars of the optimisation strategies to be pursued then
depend on the terms retained in (8) according to whether we
wish to compute optimal initial or boundary condition pertur-
bations.

Optimal initial perturbations

When calculating optimal initial perturbations, the boundary
velocity perturbations may set to zero, which is quite satisfac-
tory if the flow domain is taken large enough that the direct and
adjoint velocity perturbations are well contained within it for
t ∈ [0,τ] and if any walls are zero-slip.

Optimisation approach

The optimisation approach to finding optimal initial perturba-
tions was historically the first, as outlined e.g. in [15].

Adopting zero-Dirichlet boundary conditions for the velocity
components for both LNS equations and the adjoint equations,
the last integral in (8) becomes zero, and therefore

L0 =
(uuu′τ,uuu′τ)
(uuu′0,uuu′0)

+ 〈uuu∗,∂tuuu′+L(uuu′)〉, (9)

≡ (uuu′τ,uuu′τ)
(uuu′0,uuu′0)

+ 〈uuu′,∂tuuu∗+L∗(uuu∗)〉

− (uuu∗τ ,uuu
′
τ)+(uuu∗0,uuu

′
0). (10)

u�
0

optimization
update

�tu
� + L�u� = 0

integrate backwards

random IC

integrate forwards

Figure 3: Optimisation-based strategy for finding optimal initial
conditions. See also [15].

Setting to zero the first variations of L0 with respect to its in-
dependent variables uuu∗, uuu′ and uuu′τ yields the following set of
equations:

δL0

δuuu∗
= 0 =⇒ ∂tuuu′−L(uuu′) = 0, (11)

δL0

δuuu′
= 0 =⇒ ∂tuuu∗+L∗(uuu∗) = 0, (12)

δL0

δuuu′τ
= 0 =⇒ uuu∗τ =

2uuu′τ
(uuu′0,uuu′0)

. (13)

The first two equations recover the LNS and ANS equations,
while the third initialises the adjoint equations at t = τ with the
scaled final condition of the LNS equations since the adjoint
equations are integrated backwards. The LNS and ANS equa-
tions are integrated forwards and backwards respectively over
time interval τ in order to obtain terminal conditions: uuu′0 7→ uuu′τ
by integration of (11) and uuu∗τ 7→ uuu∗0 by integration of (12). The
terminal conditions at time τ are linked via (13).

The variation of the Lagrangian functional with respect to the
initial condition uuu′0 can be written as

δL0

δuuu′0
=

(
uuu∗0−

2(uuu′τ,uuu′τ)
(uuu′0,uuu′0)2 uuu′0,δuuu′0

)
. (14)

Using the definition of the gradient of the Lagrangian associated
with the Gâteaux differential, the gradient of the Lagrangian
functional with respect to the initial condition uuu′0 is

∇uuu′0 L0 = uuu∗0−
2(uuu′τ,uuu′τ)
(uuu′0,uuu′0)2 uuu′0. (15)

A gradient minimisation method is used to optimise uuu′0 in or-
der to reach maxima of G, i.e. where the gradient in (15) is zero
and simultaneously where conditions (11–13) are satisfied. The
algorithm is indicated schematically in figure 3; a similar rep-
resentation can be found in [15]. Starting from an initial guess
for the spatial distribution of uuu′0, the loop is iterated until the
gradient (15) reaches an acceptably small level, in which case
the gain G is estimated from the definition (3) using the final
distributions for uuu′0 and uuu′τ. An optimal step length for the gra-
dient minimisation is obtained by exploiting linearity feature of
the governing equations to update uuu′0 during the optimisation
process [7, 14].

Eigenvalue approach

The eigenvalue approach to finding optimal initial perturbations
for arbitrary flows was outlined in [1] and applied in [2, 4, 5,
12].

We may formalise the time integrations uuu′0 7→ uuu′τ uuu∗τ 7→ uuu∗0 as
operators so that

uuu′τ = M0uuu′0 and uuu∗0 = M ∗
0 uuu∗τ , (16)
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Figure 4: Application of the joint operator M ∗
0 M to an initial

vector uuu′0 used in the eigenvalue approach to calculating opti-
mal initial perturbations. See also [1].

where the actions of M0 and M ∗
0 are obtained by temporal inte-

gration, respectively forwards and backwards over the interval
[0,τ]. Comparing the two forms of the Lagrangian functional
(9) and (10), using (16), and the fact that uuu′ and uuu∗ must satisfy
(11) and (12), we see that

(uuu∗τ ,M0uuu′0) = (M ∗
0 uuu∗τ ,uuu

′
0).

Therefore M ∗
0 is the adjoint operator of M0 with respect to the

inner product (·, ·). Substituting M0 into the Lagrangian func-
tional and using this property, we now see that the Lagrangian
can be expressed as a function only of uuu′0:

L0 =
(uuu′τ,uuu′τ)
(uuu′0,uuu′0)

=
(M0uuu′0,M0uuu′0)

(uuu′0,uuu′0)
=

(uuu′0,M ∗
0 M0uuu′0)

(uuu′0,uuu′0)
. (17)

Clearly the maximum value of the Lagrangian functional is the
largest eigenvalue of the symmetric operator M ∗

0 M0, and the
corresponding eigenvector is the optimal initial perturbation.

The eigenvalues/eigenvectors of the operator M ∗
0 M0 can be cal-

culated by building a Krylov sequence through iteratively in-
tegrating a random initial perturbation forwards via the LNS
equations, backwards via the ANS equations, and then using an
Arnoldi method to extract the leading eigenvalues/eigenvectors
[1]. Application of the joint operator M ∗

0 M0 to an initial vec-
tor as one of a sequence of such applications is illustrated in
figure 4.

If the matrix form of the forward operator M0 were available,
one could alternatively obtain the optimal initial perturbation,
optimal energy growth and optimal response from the singular
value decomposition of M0:

M0UUU0i = σ0iVVV 0i. (18)

The right and left singular vectors UUU0i and VVV 0i form two orthog-
onal bases, normalised so that (UUU0i,UUU0i)= 1 and (VVV 0i,VVV 0i)= 1.
The singular values σi are real and positive. The largest singular
value is the square root of the optimal energy growth G and the
corresponding right and left singular vectors are the optimal ini-
tial perturbation and the optimal outcome. This singular value
decomposition approach is a direct method and only the forward
operator M0 is involved. In general, the matrix corresponding
to the action of M0 after spatial and temporal discretization is
not available and so, as outlined above, iterative methods that
rely only on applying operators have to be adopted.

By considering second variations, one may further show for-
mally that converged optimal initial perturbations computed us-
ing the eigenvalue and optimisation approaches are equivalent.

Optimal boundary perturbations

In this section, we present a methodology to compute the other
type of optimal perturbations considered in this work — optimal
Dirichlet-type boundary perturbations that maximise the energy
of the response perturbation field over a fixed time interval. In

the following, we denote the segment of the boundary where the
perturbation is introduced as the perturbation boundary. When
calculating optimal boundary perturbations, the initial condition
of the perturbation is set to be zero within the domain, i.e. uuu′0 =
0. Owing to the temporal form adopted for the perturbation
boundary condition (4), the initial and boundary conditions do
not conflict.

Optimisation approach

Analogously to the analysis of the optimal initial condition
problem, a Lagrangian functional for the optimal boundary per-
turbation can be expressed as

Lc =
(uuu′τ,uuu′τ)
[ûuuc, ûuuc]

−〈uuu∗,∂tuuu′−L(uuu′)〉, (19)

where the first term is the gain to be maximised and the second
term applies the constraint of the LNS equation.

Setting the adjoint velocity variables to zero on the boundary,
uuu∗(∂Ω) = 0, and using zero initial conditions, we integrate the
second term by parts to obtain

Lc =
(uuu′τ,uuu′τ)
[ûuuc, ûuuc]

+ 〈uuu′,∂tuuu∗+L∗(uuu∗)〉

− (uuu∗τ ,uuu
′
τ)+

[∫
τ

0
f (t,ω)(p∗nnn−Re−1

∇∇∇nnnuuu∗)dt, ûuuc

]
. (20)

In previous studies of local optimal boundary perturbations
[6, 7, 9], the integration in the last expression of (20) van-
ishes because the pressure and a velocity component are elimi-
nated through algebraic manipulations of the localised govern-
ing equations and both zero-Dirichlet and zero-Neumann con-
ditions were enforced on the adjoint velocity components on the
perturbation boundary. In studies when the pressure term can-
not be eliminated analytically, this integral has to be taken into
account. In the methodology to calculate the global optimal in-
flow perturbation for a stenotic flow presented in [11], a zero
pressure condition was imposed on the inflow boundary to sim-
plify the calculation. In the current work, a computed Neumann
pressure boundary condition is adopted so as to relax the zero
pressure simplification; such boundary conditions are consistent
with a velocity correction scheme [3].

Setting to zero the first variations of Lc with respect to its in-
dependent variables uuu′, uuu∗ and uuu′τ yields the following set of
equations:

δLc

δuuu∗
= 0 =⇒ ∂tuuu′−L(uuu′) = 0, (21)

δLc

δuuu′
= 0 =⇒ ∂tuuu∗+L∗(uuu∗) = 0, (22)

δLc

δuuu′τ
= 0 =⇒ uuu∗τ =

2uuu′τ
[ûuuc, ûuuc]

. (23)

In the above, (21) are the LNS equations as previously defined
in equation (1), which evolve the velocity perturbation uuuc for-
wards in time from t = 0 to t = τ but now subject to inhomo-
geneous boundary conditions, (22) are the adjoint equations,
which evolve the adjoint velocity uuu∗τ backwards from t = τ to
t = 0, while (23) scales the outcome of the LNS equations at
time t = τ in order to initialise the adjoint equations. The gra-
dient of the Lagrangian functional with respect to the spatial
distribution of the boundary condition ûuuc can be expressed as

∇ûuuc Lc =
−2(uuu′τ,uuu′τ)
[ûuuc, ûuuc]2

ûuuc +ggg(uuu∗, p∗,ω), (24)



where

ggg(uuu∗, p∗,ω) =
∫

τ

0
f (t,ω)(p∗nnn−Re−1

∇∇∇nnnuuu∗)dt. (25)

Thus the methodology required to compute the optimal spatial
boundary perturbation distribution is conceptually rather similar
to that employed for the computation of optimal initial condi-
tions (see figure 3) except that the optimisation update now em-
ploys (24) instead of (15) and involves accumulating the integral
(25), a vector function of spatial location along the perturbation
boundary, during backward integration of (22).

We note that for the perturbation boundary, other valid com-
binations of boundary conditions exist for the adjoint velocity
variables besides the zero Dirichlet condition, e.g.

∇nnnuuu∗+
Re p′−∇nnnuuu′

uuu′
uuu∗ = 0, with p∗ = 0, (26)

where the factor (Re p′ −∇nnnuuu′)/uuu′ — calculated component-
by-component so that each term in this ratio is scalar — is cal-
culated and stored in the forward integration of (21) and substi-
tuted into the Robin condition (26) at every time step during the
backward integration of (22).

For this boundary condition the definition of ggg becomes

ggg(uuu∗, p′,ω) =
∫

τ

0
f (t,ω)(−nnn ···UUU)uuu∗ dt.

This ‘outflow’ type condition on the adjoint variable might be
considered as more appropriate if the perturbation boundary is
the inflow boundary and one follows the heuristic argument
that the ‘inflow’ boundary for the LNS equations is an ‘out-
flow’ boundary condition for the adjoint equations owing to the
change in sign of the advection terms. It has been demonstrated
however that both sets of boundary conditions lead to the same
value of gain [11]. This combination of boundary conditions
also requires extra memory (to store (Re p′ −∇nnnuuu′)/uuu′) and
more computer time owing to the update of the Robin condi-
tion for velocities in the backward integration. Therefore in the
present work we did not employ this combination but instead
took uuu∗ = 0 as noted above.

To summarise the initial and boundary conditions used in the
optimal boundary condition problem, we adopt the following
approach. The initial condition for the LNS equations is uuu′0 = 0
on the interior of the domain Ω. For evolution of the adjoint
equations, the initial adjoint state (at time τ), uuu′τ, is computed
from (23).

On the perturbation boundary segment of ∂Ω, we have Dirich-
let boundary conditions on the perturbation velocity: uuu′ = uuu′c =
ûuuc f (t,ω) in which the temporal function f (t,ω) is prescribed,
and the spatial function ûuuc is the object to optimise. On this
segment the adjoint boundary conditions are prescribed to be
uuu∗ = 0, while for pressure variables we adopt consistent Neu-
mann pressure conditions [10], which do not impose any addi-
tional restraints on the equations.

The specification of initial and boundary conditions for the LNS
and adjoint equations imposes some constraints on the tempo-
ral function f (t,ω). We see that the initial condition for the
LNS equations is set to zero, so the Dirichlet velocity condition
on the perturbation boundary at t = 0 has to be zero to elim-
inate the spatial discontinuity at the beginning of the forward
integration. Further, since we require zero Dirichlet velocity
conditions on the perturbed boundary for the adjoint equations,
the initial condition for the adjoint equations, which is scaled
from the final condition of the LNS equations by (23), has to

be zero on the perturbation boundary, and therefore the final
condition uuu′(τ) has to be zero on the perturbation boundary,
which requires uuu′c = 0 at t = τ. To satisfy these compatibil-
ity requirements, the time-dependency function should satisfy
f (0,ω) = f (τ,ω) = 0.

The outflow boundary segment deserves additional attention.
We can use uuu′ = 0 for m 6= 0, as presented in [11], but at m = 0,
the mass flux into the domain from the perturbation bound-
ary may be non-zero, and so a zero-Dirichlet outflow condition
violates the mass conservation law. A new outflow boundary
condition may be adopted to avoid this violation. For the for-
ward integration it is a typical zero-Neumann outflow condi-
tion: ∇nuuu′ = 0, p′ = 0, while for the backward integration it is a
Robin condition, ∇nuuu∗+ReUUUnuuu∗ = 0, p′ = 0. Inspecting equa-
tion (8), one notes that the integral over the outflow boundary
under these specifications is zero. At m 6= 0, the zero-Dirichlet
outflow boundary condition and the new condition yield the
same result within machine precision, providing that the com-
putational domain is adequately long for the perturbation not to
leave the domain. However, this new outflow condition (Neu-
mann for forward integration and Robin for backward integra-
tion) is suitable for general-sized domains.

For the remaining boundaries, the boundary condition for the
LNS equations and adjoint equations are the same. For exam-
ple, on a cylindrical axis boundaries, the boundary conditions
for velocity and pressure variables are zero-Dirichlet or zero-
Neumann, depending on the azimuthal wave numbers, as out-
lined in [3] in combinations that also make no contribution to
the integral term in equation (8); on far-field segments, zero
Dirichlet velocity conditions and computed Neumann pressure
conditions are adopted for the velocity components and pres-
sure term in both LNS equations and the adjoint equations.

Eigenvalue approach

The boundary perturbation optimisation problem can be also
transformed into an eigenvalue problem. Similar to the analysis
of the optimal initial condition problem, we denote Mc as an
evolution operator such that

uuu′τ = Mcûuuc, (27)

with dual operator M ∗
c

ggg = M ∗
c uuu∗τ . (28)

Comparing the Lagrangian functional before and after the inte-
gration by parts as shown in (19) and (20), we note that Mc and
M ∗

c satisfy a duality relation arising from the last two terms in
equation (20)

(aaa,Mcbbb) = [M ∗
c aaa,bbb] where aaa ∈Ω,bbb ∈ ∂Ω. (29)

Using relationships (27–29) in the Lagrangian functional, we
obtain

Lc =
(uuu′τ,uuu′τ)
[ûuuc, ûuuc]

=
[M ∗

c Mcûuuc, ûuuc]

[ûuuc, ûuuc]
.

Clearly the maximum value of Lc and the corresponding op-
timal boundary perturbation are the largest eigenvalue of the
operator M ∗

c Mc and the associated eigenvector.

Recalling (23) and using (27) and (28), we observe that the joint
action of Mc and M ∗

c on the boundary perturbation ûuuc can be
expressed as

M ∗
c Mcûuuc = M ∗

c uuu′τ = ggg
[ûuuc, ûuuc]

2
. (30)



Figure 5: Example computation of an optimal initial condition for steady flow over a backward-facing step [2]. Steady base flow UUU
at Re = 500, kinetic energy distribution of the two-dimensional global optimal initial condition uuu′0 for τ = 58, and the corresponding
outcome uuu′τ.

Therefore when ûuuc becomes the leading eigenvector of M ∗
c Mc,

ggg is parallel to the vector ûuuc and the corresponding eigenvalue
is [ggg, ûuuc]/2.

It can be demonstrated that the Lagrangian functional Lc has
only one maximiser, which is the leading eigenvector of M ∗

c Mc,
where the maximum value of Lc is the corresponding largest
eigenvalue; and only one minimiser, provided by the eigenvec-
tor associated with the smallest eigenvalue of M ∗

c Mc, which
is the minimum value of Lc. All other eigenvectors of M ∗

c Mc
correspond to inflection points of the Lagrangian functional.

Therefore an eigenvalue solver can be employed as an alterna-
tive to the optimisation method to calculate the optimal bound-
ary perturbation. We start from an initial guess of the boundary
perturbation, evolve it forwards in the LNS equations, use the
final condition to initialise the adjoint LNS equation, evolve the
adjoint variable backwards to obtain ggg (which must be evaluated
throughout the integration interval), and then use ggg to initialise
the LNS equations to repeat this cycle. This iterative action of
the joint operator on the initial boundary perturbation builds a
Krylov sequence and an Arnoldi method can be used to extract
the eigenvalue/vectors of the joint operator from the sequence.
The inner loop of the eigenvalue solver for the optimal bound-
ary perturbation is conceptually similar to the inner loop for the
optimal initial condition eigenvalue counterpart, illustrated in
figure 4.

Analogously to the case for the optimal initial perturbation dis-
cussed earlier, if the matrix form of the forward operator Mc
is available, we can obtain the optimal boundary perturbation,
optimal gain and optimal response from the singular value de-
composition of Mc:

McUUUci = σciVVV ci. (31)

The right and left singular vectors UUUci and VVV ci form two orthog-
onal bases, and they are normalised so that [UUUci,UUUci] = 1 and
(VVV ci,VVV ci) = 1. The singular values σci are real and positive.
Clearly the largest singular value is the square root of the opti-
mal gain and the corresponding right and left singular vectors
are the optimal boundary perturbation and the optimal outcome.
This singular value decomposition approach is a direct method
and only the forward operator Mc is involved. In general global
studies, the matrix form of Mc is not available and an iterative
method such as an optimisation or eigenvalue method must be
adopted to calculate the optimal boundary perturbation.

Case studies

Our case study results are all computed using spectral element
spatial discretisations with a backward-difference time integra-
tion scheme see e.g. [3]. However the general characteristics of
the results obtained would be much the same regardless of the
discretisations employed.

Optimal initial perturbation

An example that illustrates the global optimal initial condition
computed for two-dimensional perturbations to two-dimension-
al flow over a backward-facing step is shown in figure 5, where
the energy growth G = 63.1× 103 for τ = 58.0 [2]. While for
any time horizon τ the methods deliver the optimal initial per-
turbation uuu′ and growth G, in flows where the perturbation is
asymptotically stable for large times, one has to find the value
of τ which delivers largest overall growth (the global optimum)
by trial and error, since linear perturbation energies will eventu-
ally fall to zero in the τ→ ∞ limit.

The iteration convergence of optimal energy growth G for both
methods (though for a different problem) are compared in fig-
ure 6. The convergence criterion for the optimal energy growth
is defined as r0value = (Gk −G40)/G40 where the superscript
denotes iteration index. We see that the eigenvalue method con-
verges much more rapidly than the optimisation method. The
amount of work per iteration is similar for the two methods,
so the eigenvalue approach is clearly superior for this optimal
initial perturbation problem.

Optimal boundary perturbation

An example which illustrates the outcomes of an optimal
boundary perturbation computation was presented in [11],
which deals with inflow boundary perturbations to steady
stenotic flow. The optimal initial conditions and outcomes for
this flow were earlier presented in [4] and form an interesting
basis for comparison. The nature of the temporal dependence
of the inflow perturbations employed, a type of burst signal, is
illustrated in figure 2; the frequency of the oscillation was ini-
tially selected using knowledge of the optimal initial condition
outcome.

Figure 7 shows outcomes of an optimal boundary condition
computation for steady stenotic flow at Re = 400, azimuthal
wavenumber m = 1 (which provides the largest energy growth
G and gain K), and time horizon τ = 6.71.
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Figure 6: Comparison of convergence of optimal energy growth
G for the optimisation method and eigenvalue method applied to
an example initial condition problem; k is loop iteration index.
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Figure 7: Radial profiles of optimal inflow boundary condition
perturbation computed for steady stenotic flow at Re = 400,
m = 1, τ = 6.71. The velocity components (u,v,w) respectively
represent axial, radial and azimuthal flow speeds. See also [11].

The perturbation flow that evolves downstream from this inflow
boundary condition disturbance is illustrated in figure 8. As
noted in [11], this perturbation flow is extremely similar to the
result of an optimal initial disturbance at the time for global
maximum energy growth. The perturbation evolves to a sinuous
disturbance of the axisymmetric shear layer present in the base
flow at this location, which in turn results from flow separation
in the stenosis throat.

The temporal evolution resulting from the same boundary con-
dition perturbation is illustrated in figure 9, where contour lev-
els are chosen arbitrarily in order to show structure. We see that
at t = 1.98, the inflow pulse, while still not fully advected into

Figure 8: Positive/negative isosurfaces of axial velocity per-
turbation to steady stenotic flow at time of maximum gain,
t = τ = 6.71 resulting from the inflow boundary perturbation
shape shown in figure 7.
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Figure 10: Optimal gain envelope for an inflow perturbation
to steady stenotic flow for Re = 400, azimuthal wavenumber
m = 1, together with the time evolution of transient gains with
optimal inflow perturbations specific to τ = 3.05 and τ = 6.71.

the domain, has reached the stenosis throat, and there develops
structure that is locally similar to the optimal initial condition
on the shear layer adjacent to the contraction (compare to fig-
ure 5 b of [4]).

Analogously to optimal initial condition studies of linearly sta-
ble flows, for any given boundary perturbation time profile
f (t,ω), there is an associated time horizon τopt that gives global
optimal gain K. In order to find the global optimal gain and the
associated time horizon, the method presently under discussion
requires that τopt must be established by another level of opti-
misation, or on a trial-and-error basis. This point is illustrated
in figure 10, which shows the envelope of optimal gain as a
function of time horizon τ. Each computation for K at given τ

finds one point on the envelope. Linear evolution of the gain
with time for any particular optimal boundary perturbation as-
sociated with this τ falls within the envelope, osculating it at
the corresponding τ. In this case, τopt = 6.71with the associated
global optimal gain K = 159.4.

Finally we consider the relative performance of the optimisa-
tion and eigenvalue approaches to computing optimal boundary
disturbances. The convergence speeds of the optimal gain for
both optimisation method and eigenvalue method are reported
in figure 11. The convergence criterion for gain is defined as
rcvalue = (Kk−K10)/K10, where the superscript denotes the in-
dex of iterations. We see that in contrast to what was observed
for the calculation of optimal initial conditions, the optimisa-
tion method ultimately converges a faster than the eigenvalue
method. This is because of the low dimension of the operator
M ∗

c Mc, related to the fact that here the optimisation task (over
a boundary surface) is of lower dimensionality than for an opti-
mal initial perturbation problem (over a spatial volume).

Conclusions

These discussion reveal some of the underlying similarities be-
tween the conceptual frameworks used for the study of optimal
initial and boundary condition disturbances in arbitrary open
flows, as well as physical outcomes. Either optimisation-based
or eigensystem-based methods may be employed for compu-
tations, though as the dimensionality of the problem increases
— from boundary surface to spatial volumetric disturbances —
iterative (Arnoldi-type) eigensystem computations have been
more efficient than (steepest-descent) optimisation methods.

The connection between the physics of optimal boundary and
initial perturbations is strong, as was also suggested (via DNS)
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Figure 9: Time evolution resulting from the optimal inflow boundary perturbation to steady stenotic flow at Re = 400, m = 1, τ =
6.71. Contours of axial velocity component on the meridional plane; contour levels are chosen arbitrarily to highlight the structure of
perturbation flows and differ in each panel. The equivalent perspective view for t = 6.71 is shown in figure 8.
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Figure 11: Comparison of convergence of optimal gain K for
the optimisation method and eigenvalue method applied to the
computation of boundary condition perturbations in an example
flow; k is loop iteration index.

in previous studies [1, 2, 5]. Informally, we can conceptualise
the process of optimal boundary perturbations in open flows as
being closely related to that for optimal initial perturbations,
whereby the boundary perturbation advects to the zone for the
optimal initial perturbation, convolves with its distribution, with
the subsequent physics being essentially those resulting from
an optimal initial perturbation. Firmly establishing the formal
connection remains an open problem.
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